16t^2=1437

Simple and best practice solution for 16t^2=1437 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16t^2=1437 equation:



16t^2=1437
We move all terms to the left:
16t^2-(1437)=0
a = 16; b = 0; c = -1437;
Δ = b2-4ac
Δ = 02-4·16·(-1437)
Δ = 91968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{91968}=\sqrt{64*1437}=\sqrt{64}*\sqrt{1437}=8\sqrt{1437}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1437}}{2*16}=\frac{0-8\sqrt{1437}}{32} =-\frac{8\sqrt{1437}}{32} =-\frac{\sqrt{1437}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1437}}{2*16}=\frac{0+8\sqrt{1437}}{32} =\frac{8\sqrt{1437}}{32} =\frac{\sqrt{1437}}{4} $

See similar equations:

| 9x-33+2x+7=62 | | 15/100=2x | | -2x-32=x-40 | | 1/3x(4x-5)=0 | | 2x+11=3x+35 | | -15y+7+17y=2y+70= | | 7x +7= 8x −4  | | 8x-12+3x+27=180 | | -3x^2-30x+12=0 | | 3x+10=5x-82 | | 36=w/5 | | h/13=3.75 | | x+(7x+2)+(3x-9)=180 | | b+2.3=18.09 | | m2=m6 | | Y=(7/8)^t | | 4(4x-1.3)=2x-5.2 | | z-14=42 | | 9x-33=2x+7 | | 6(x+4=66 | | 6(x+4=66 | | r-1.23=5.29 | | 5x+2x-8=9 | | 64x-40=5x-35 | | |2x-9|/3=12 | | k=66=98 | | 9+0.25x=1.25x | | -0.5x+8=2.5 | | 1/3•8x+5x=46 | | 6^x-2=32 | | -18+2r=6-2r | | 12x+6=6x-52 |

Equations solver categories